
Introduction to
Computer Networks

Transport Layer Protocols

 All rights reserved. No part of this publication and file may be reproduced, stored
in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without prior written
permission of Professor Nen-Fu Huang (E-mail: nfhuang@cs.nthu.edu.tw).

Transport_Protocols - 2

Outline

 Introduction to end-to-end protocols

 Simple Demultiplexer protocol (UDP)

 Reliable Byte Stream protocol (TCP)

Transport_Protocols - 3

End-to-end Protocols

 A transport protocol is usually expected to provide

 Guaranteed message delivery

 Delivers messages in the same order they were sent

 Delivers at most one copy of each message

 Supports arbitrarily large messages

 Supports synchronization between the sender and the
receiver

 Allows the receiver to apply flow control to the sender

 Supports multiple application processes on each host

Transport_Protocols - 4

End-to-end Protocols

 Typical limitations of the network service (like IP
of Internet) on which transport protocol will
operate

 Drop messages

 Reorder messages

 Deliver duplicate copies of a given message

 Limit messages to some finite size

 Deliver messages after an arbitrarily long delay

 Unreliable service

Transport_Protocols - 5

End-to-end Protocols

 Challenge for Transport Protocols

 Develop algorithms that turn the unreliable
service of the underlying network into the
service required by application programs

 Unreliable service Unreliable service (UDP)

 Unreliable service Reliable service (TCP)

Transport_Protocols - 6

Outline

 Introduction to end-to-end protocols

 Simple Demultiplexer protocol (UDP)

 Reliable Byte Stream protocol (TCP)

Transport_Protocols - 7

Simple Demultiplexer (UDP)

 Extends host-to-host delivery service of the
underlying network into a process-to-process
communication service

 Adds a level of demultiplexing which allows
multiple application processes on each host to
share the network

Transport_Protocols - 8

Simple Demultiplexer (UDP)

Format for UDP header

SrcPort DstPort

Checksum Length

Data

0 8 16 31

Transport_Protocols - 9

Simple Demultiplexer (UDP)

UDP Packet Demultiplexer

UDP

Application
Process

Application
Process

Application
Process

Port X

Queues

Port YPort Z

Transport_Protocols - 10

Outline

 Introduction to end-to-end protocols

 Simple Demultiplexer protocol (UDP)

 Reliable Byte Stream protocol (TCP)

Transport_Protocols - 11

Reliable Byte Stream (TCP)

 In contrast to UDP, Transmission Control Protocol
(TCP) offers the following services

 Reliable

 Connection oriented

 Byte-stream service

Transport_Protocols - 12

Flow control VS Congestion control

 Flow control involves preventing senders from
overrunning the capacity of the receivers

 Congestion control involves preventing too much
data from being injected into the network,
thereby causing routers/switches or links to
become overloaded

Transport_Protocols - 13

End-to-end Issues

 TCP runs over the Internet rather than a point-to-
point link

 The TCP sliding window algorithm need to
consider:

 TCP supports logical connections between processes
that are running on two different computers in the
Internet

 TCP connections are likely to have widely different
RTT times

 Packets may get reordered in the Internet

Transport_Protocols - 14

End-to-end Issues

 TCP needs a mechanism using which each side of a
connection will learn what resources the other side
offers to the connection

 TCP needs a mechanism using which the sending
side will learn the capacity of the network

Transport_Protocols - 15

TCP Segment

 TCP is a byte-oriented protocol

 The sender writes bytes into a TCP connection
and the receiver reads bytes out of the TCP
connection.

 However, TCP does not transmit individual bytes
over the Internet.

Transport_Protocols - 16

TCP Segment

 The source TCP buffers enough bytes from the
sending process to fill a reasonably sized
packet and then sends this packet to its peer
on the destination host.

 The destination TCP then puts the contents of
the packet into a receive buffer, and the
receiving process reads from this buffer.

 The packets exchanged between TCP peers are
called segments.

Transport_Protocols - 17

TCP Segment

How TCP manages a byte stream.

TCP

Application
Process

Application
Process

Read
bytes

Send Buffer

TCP

Receive Buffer

Write
bytes

Transmit segments

….

Transport_Protocols - 18

TCP Header

TCP Header Format

Source Port Destination port

Sequence Number

Acknowledgement Number

Advertised Window

Urgent PointerCheckSum

Options + Padding

Data

Data
Offset

F
I
N

S
Y
N

R
S
T

P
S
H

A
C
K

U
R
G

0 16 31

Transport_Protocols - 19

TCP Header

 The SrcPort and DstPort fields identify the source and
destination ports, respectively.

 The Acknowledgment, SequenceNum, and
AdvertisedWindow fields are all involved in TCP’s sliding
window algorithm.

 Because TCP is a byte-oriented protocol, each byte of
data has a sequence number; the SequenceNum field
contains the sequence number for the first byte of data
carried in that segment.

 The Acknowledgment and AdvertisedWindow fields
carry information about the flow of data going in the
other direction.

Transport_Protocols - 20

TCP Header

 The 6-bit Flags field is used to relay control information
between TCP peers.

 The possible flags include SYN, FIN, RESET, PUSH, URG,
and ACK.

 The SYN and FIN flags are used when establishing and
terminating a TCP connection, respectively.

 The ACK flag is set any time the Acknowledgment field
is valid, implying that the receiver should pay attention
to it.

Transport_Protocols - 21

TCP Header

 The URG flag signifies that this segment contains urgent
data. When this flag is set, the UrgPtr field indicates
where the nonurgent data contained in this segment
begins.

 The urgent data is contained at the front of the segment
body, up to and including a value of UrgPtr bytes into
the segment.

 The PUSH flag signifies that the sender invoked the
push operation, which indicates to the receiving side of
TCP that it should notify the receiving process of this
fact.

Transport_Protocols - 22

TCP Header

 The RESET flag signifies that the receiver has become
confused, it received a segment it did not expect to
receive—and so wants to abort the connection.

 Finally, the Checksum field is used in exactly the same
way as for UDP—it is computed over the TCP header,
the TCP data, and the pseudoheader, which is made up
of the source address, destination address, and length
fields from the IP header.

Transport_Protocols - 23

TCP Connection Management

 TCP sender, receiver establish “connection” before
exchanging data segments

 initialize TCP variables:

 Sequence numbers

 Buffers, flow control info (e.g. RcvWindow)

 Client: connection initiator
Socket clientSocket = new Socket("hostname","port

number");

 Server: contacted by client
Socket connectionSocket = welcomeSocket.accept();

Transport_Protocols - 24

TCP Connection Management

Three-way handshake:

Step 1: Client sends TCP SYN segment to server

 specifies initial seq #

 no data

Step 2: Server receives SYN, replies with SYN/ACK segment

 server allocates buffers

 specifies server initial seq. #

Step 3: client receives SYN/ACK, replies with ACK segment,
which may contain data

Transport_Protocols - 25

Connection Establishment in TCP

Timeline for three-way handshake algorithm

Client Server

Transport_Protocols - 26

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close()

;

Step 1: Client sends TCP FIN

control segment to server

Step 2: Server receives FIN,
replies with ACK. Closes
connection, sends FIN.

Close

Client Server

Closing

Closing

T
im

e
d

 w
ai

t

Closed

Closed

Transport_Protocols - 27

TCP Connection Management (cont.)

Step 3: Client receives
FIN, replies with ACK.

 Enters “timed wait” -
will respond with
ACK to received FINs

Step 4: Server receives
ACK. Connection closed.

Note: with small
modification, can handle
simultaneous FINs.

Close

Client Server

Closing

Closing

T
im

e
d

 w
ai

t

Closed

Closed

Transport_Protocols - 28

TCP Connection Management (cont)

CLOSED

SYN_SENT

ESTABISHED

FIN_WAIT_1

FIN_WAIT_2

TIME_WAIT

Send SYN

Receive SYN/ACK
Send ACK

Send FIN
Receive ACK
Send nothing

Receive FIN
Send ACK

Wait 30
seconds

Client initiates a
TCP Connection

Client initiates close
Connection

TCP client state diagram

Transport_Protocols - 29

TCP Connection Management (cont)

TCP server state diagram

CLOSED

LISTEN

SYN_RCVD

ESTABLISHED

CLOSE_WAIT

LAST_ACK

Send nothing

Receive SYN
Send SYN/ACK

Receive ACK
Send nothing

Send FIN

Server creates a
Listen socket

Receive FIN
Send ACK

Receive ACK
Send nothing

Transport_Protocols - 30

Timeout value for Retransmission

Original Algorithm

 Measure SampleRTT for each segment/ ACK pair

 Compute weighted average of RTT

EstRTT = a x EstRTT + (1 - a)x SampleRTT

 a between 0.8 and 0.9

 Set timeout based on EstRTT

TimeOut = 2 x EstRTT

Transport_Protocols - 31

Timeout value for Retransmission

 Problem of calculating the SampleRTT

 When a segment is retransmitted and then an
ACK arrives at the sender

It is impossible to decide if this ACK should
be associated with the first or the second
transmission for calculating RTTs

Transport_Protocols - 32

Timeout value for Retransmission

Problems of associating the ACK with

(a) original transmission (should be retransmission)

(b) retransmission (should be original)

Sender Receiver
S

am
p

le
R

T
T

Sender Receiver

S
am

p
le

R
T

T

Transport_Protocols - 33

Karn/Partridge Algorithm

 Do not sample RTT when retransmitting

 Double timeout after each retransmission

 Karn-Partridge algorithm was an improvement
over the original approach, but it does not
eliminate congestion

 We need to understand how timeout is related to
congestion

 If you timeout too soon, you may unnecessarily
retransmit a segment which adds load to the network

Transport_Protocols - 34

Karn/Partridge Algorithm

 Main problem with the original computation is
that it does not take variance of SampleRTTs into
consideration.

 For small variance among SampleRTTs

 Then the EstimatedRTT can be better trusted

 There is no need to multiply this by 2 to compute the
timeout

 For large variance among SampleRTTs

 The timeout value should not be tightly coupled to the
Estimated RTT

Transport_Protocols - 35

Jacobson/Karels Algorithm

 Jacobson/Karels proposed a new scheme for TCP
retransmission

 Difference = SampleRTT − EstimatedRTT

 EstimatedRTT = EstimatedRTT + (d × Difference)

 Deviation = Deviation + d (|Difference| − Deviation)

 where d is a factor between 0 and 1

 TimeOut = μ× EstimatedRTT + f × Deviation

 where based on experience, μ = 1 and f = 4.

 Thus, when the variance is small, TimeOut is close to
EstimatedRTT; a large variance causes the deviation
term to dominate the calculation.

Transport_Protocols - 36

TCP retransmission scenarios

T
im

e
o

u
t

T
im

e
o

u
t

T
im

e
o

u
t

Lost ACK Delayed ACK

Transport_Protocols - 37

TCP retransmission scenarios (more)

T
im

e
o

u
t

Cumulative ACKs

Transport_Protocols - 38

TCP Fast Retransmission

 Fast Retransmit

 Every time a data packet arrives at the
receiving side, the receiver responds with an
acknowledgment, even if this sequence
number has already been acknowledged.

 Thus, when a packet arrives out of order—TCP
resends the same acknowledgment it sent last
time.

 This second transmission of the same
acknowledgment is called a duplicate ACK.

Transport_Protocols - 39

TCP Fast Retransmission

 Fast Retransmit

 When the sending side sees a duplicate ACK, it knows
that the other side must have received a packet out of
order, which suggests that an earlier packet might
have been lost.

 Since it is also possible that the earlier packet has only
been delayed rather than lost, the sender waits until it
sees some number of duplicate ACKs and then
retransmits the missing packet.

 TCP waits until it has seen three duplicate ACKs before
retransmitting the packet.

Transport_Protocols - 40

TCP Fast Retransmission

ACK =2

1

2

ACK =2

3

ACK =2
4

ACK =2

5

2

ACK =6

Sender Receiver

Transport_Protocols - 41

TCP Congestion Control

 The idea of TCP congestion control is for each
source to determine how much capacity is
available in the network, so that it knows how
many packets it can safely have in transit.

 TCP is said to be self-clocking by using ACKs to
pace the transmission of packets.

Transport_Protocols - 42

 Additive Increase Multiplicative Decrease (AIMD)

 CongestionWindow: used by the source to limit how
much data it is allowed to have in transit
simultaneously for a connection.

 The congestion window is congestion control’s
counterpart to flow control’s advertised window.

 The maximum number of bytes of unacknowledged
data allowed is now the minimum of the congestion
window and the advertised window

 Transmission rate

Rate = CongestionWindow Bytes/sec

TCP Congestion Control

RTT

Transport_Protocols - 43

TCP Congestion Control

 Additive Increase Multiplicative Decrease (AIMD)

 TCP’s effective window is revised as follows:

 MaxWindow = MIN (CongestionWindow, AdvertisedWindow)

 EffectiveWindow = MaxWindow − (LastByteSent −
LastByteAcked).

 A TCP source is allowed to send no faster than the
slowest component can accommodate

the network or

the destination host

Transport_Protocols - 44

TCP Congestion Control

 Additive Increase Multiplicative Decrease (AIMD)

 How to determine the value for CongestionWindow ?

 The AdvertisedWindow is sent by the receiver.

 But no one to send a suitable CongestionWindow to
the sending side of TCP.

 TCP source sets the CongestionWindow based on the
congestion level it observed.

Decreasing the congestion window when the level
of congestion goes up and

Increasing the congestion window when the level
of congestion goes down.

 Called additive increase/multiplicative decrease (AIMD)

Transport_Protocols - 45

TCP Congestion Control

 Additive Increase Multiplicative Decrease (AIMD)

 How does the source determine that the network is
congested and that it should decrease the congestion
window?

TCP interprets packet lose (3-duplicate ACK) as a
sign of congestion and reduces the rate.

Each time a packet lose occurs, the source sets
CongestionWindow to half of its previous value.

This corresponds to the “multiplicative decrease”
part of AIMD.

Transport_Protocols - 46

TCP Congestion Control

 Additive Increase Multiplicative Decrease (AIMD)

 Although CongestionWindow is defined in terms of
bytes, it is easiest to understand multiplicative decrease
if we think in terms of whole packets.

For example, suppose the CongestionWindow is
currently set to 16 packets. If a loss is detected,
CongestionWindow is set to 8.

Additional losses cause CongestionWindow to be
reduced to 4, then 2, and finally to 1 packet.

CongestionWindow is not allowed to fall below the
size of a single packet, or in TCP terminology, the
maximum segment size (MSS).

Transport_Protocols - 47

TCP Congestion Control

 Additive Increase Multiplicative Decrease (AIMD)

 Increase the congestion window when the
newly capacity of network is available.

 Every time the source successfully sends a
CongestionWindow’s worth of packets (all
packets sent out during the last RTT have been
ACKed), it adds the equivalent of 1 packet to
CongestionWindow.

Transport_Protocols - 48

TCP Congestion Control
 Additive Increase Multiplicative Decrease (AIMD)

One more packet is added for each RTT

Transport_Protocols - 49

TCP Congestion Control

 Additive Increase Multiplicative Decrease (AIMD)

 TCP does not wait for an entire window’s worth of ACKs
to add 1 packet’s worth to the congestion window, but
instead increments CongestionWindow by a little for
each ACK.

 不等所有 ACK都收到才加 1 (MSS bytes), 每收到一個
ACK就先加一部分 (CW 可以較早滑動)

 例如

 CW = 5 x MSS,每收到一個 ACK就先加 1/5 MSS

 CW = 8 x MSS,每收到一個 ACK就先加 1/8 MSS

 Increment = MSS × (MSS/CongestionWindow)

 CongestionWindow += Increment

Transport_Protocols - 50

TCP Congestion Control

 Additive Increase Multiplicative Decrease (AIMD)

 Trace: Sawtooth behavior

Time

C
o

n
g

e
st

io
n

 W
in

d
o

w

Packet lose

Transport_Protocols - 51

TCP Congestion Control

 Slow Start

 The additive increase mechanism is good when
the source is operating close to the available
capacity of the network, but it takes too long to
ramp up a connection when it is starting from
scratch.

 Slow start: to increase the congestion window
rapidly from a cold start.

 Slow start effectively increases the congestion
window exponentially, rather than linearly.

Transport_Protocols - 52

TCP Congestion Control

 Slow Start

 Initially, the CongestionWindow = 1 packet.

 Example: MSS = 500 bytes, RTT = 200 msec

initial rate = 20 kbps

 When the ACK for this packet arrives, TCP adds 1 to
CongestionWindow and then sends two packets.

 每收到一個 ACK就加 1 packet (MSS)

 Upon receiving the corresponding two ACKs, TCP
increments CongestionWindow by 2— one for each
ACK—and next sends four packets.

 TCP effectively doubles the number of packets it has
in transit every RTT.

Transport_Protocols - 53

TCP Congestion Control (Slow Start)

 Slow Start

 When connection begins,
increase rate exponentially
until first loss event:

 double CongWin every RTT

 done by incrementing
CongWin for every ACK
received

 initial rate is slow but ramps
up exponentially fast

Packets in transit during slow start

Transport_Protocols - 54

TCP Congestion Control

 After 3 dup ACKs:

 CongWin is cut in half

 window then grows
linearly

 But after timeout event:

 CongWin instead set to 1
MSS;

 window then grows
exponentially

 to a threshold, then
grows linearly

 3 dup ACKs indicates
network capable of
delivering some
segments

 Timeout indicates a
“more alarming”
congestion scenario

note

Transport_Protocols - 55

TCP Congestion Control

 Summary :

 When CongWin is below Threshold, sender in slow-start
phase, window grows exponentially.

 When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

 When a triple duplicate ACK occurs, Threshold set to
CongWin/2 and CongWin set to Threshold.

 When timeout occurs, Threshold set to CongWin/2 and
CongWin is set to 1 MSS.

Transport_Protocols - 56

TCP Congestion Control

Round Trip Time

C
o

n
g

e
st

io
n

 W
in

d
o

w
 S

iz
e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1
 2

3

 4

5
 6

 7

8
 9

 1
0

 1
1

 1
2

13
 1

4
 1

5
16

 1
7

18

Slow Start Slow Start

3-duplicate ACK

3-duplicate ACK

Timeout

Threshold
5

10

6

12

8

16
Congestion-Avoidance phase

Transport_Protocols - 57

TCP Sender Congestion Control

State Event TCP Sender Action Commentary

Slow Start

(SS)

ACK receipt

for

previously

unacked

data

CongWin = CongWin + MSS,

If (CongWin > Threshold)

set state to

“Congestion Avoidance”

Resulting in a doubling of

CongWin every RTT

Congestion

Avoidance

(CA)

ACK receipt

for

previously

unacked

data

CongWin = CongWin+MSS *

(MSS/CongWin)

Additive increase,

resulting in increase of

CongWin by 1 MSS every

RTT

SS or CA Loss event

detected by

triple

duplicate

ACK

Threshold = CongWin/2,

CongWin = Threshold,

Set state to

“Congestion Avoidance”

Fast recovery,

implementing

multiplicative decrease.

CongWin will not drop

below 1 MSS.

SS or CA Timeout Threshold = CongWin/2,

CongWin = 1 MSS,

Set state to “Slow Start”

Enter slow start

SS or CA Duplicate

ACK

Increment duplicate ACK

count for segment being

acked

CongWin and Threshold

not changed

Transport_Protocols - 58

TCP throughput

 What’s the average throughout of TCP as a
function of window size and RTT ?

 Ignore slow start

 Let W be the window size when loss occurs.

 When window is W, throughput is W/RTT

 Just after loss, window drops to W/2, throughput
to W/2RTT.

 Average throughout: 0.75 W/RTT

Transport_Protocols - 59

Summary

 We have introduced how to convert host-to-host
packet delivery service to process-to-process
communication channel.

 UDP for unreliable transmission service

 TCP for reliable transmission service

 3-way handshaking connection establishment

 TCP connection state diagram

 TCP timeout value calculation

 TCP retransmission scenarios

 TCP fast retransmission

Transport_Protocols - 60

Summary

 TCP Congestion Control

AIMD (additive Increase Multiplicative Decrease)

Slow start

3-duplicate ACKs (packet lose)

Timeout

